Pulmonary Blood Flow Heterogeneity during Hypoxia and High-Altitude Pulmonary Edema

Uneven hypoxic pulmonary vasoconstriction has been proposed to expose parts of the pulmonary capillary bed to high pressure and vascular injury in high-altitude pulmonary edema (HAPE). We hypothesized that subjects with a history of HAPE would demonstrate increased heterogeneity of pulmonary blood f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2005-01, Vol.171 (1), p.83-87
Hauptverfasser: Hopkins, Susan R, Garg, Joy, Bolar, Divya S, Balouch, Jamal, Levin, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uneven hypoxic pulmonary vasoconstriction has been proposed to expose parts of the pulmonary capillary bed to high pressure and vascular injury in high-altitude pulmonary edema (HAPE). We hypothesized that subjects with a history of HAPE would demonstrate increased heterogeneity of pulmonary blood flow during hypoxia. A functional magnetic resonance imaging technique (arterial spin labeling) was used to quantify spatial pulmonary blood flow heterogeneity in three subject groups: (1) HAPE-susceptible (n = 5), individuals with a history of physician-documented HAPE; (2) HAPE-resistant (n = 6), individuals with repeated high-altitude exposure without illness; and (3) unselected (n = 6), individuals with a minimal history of altitude exposure. Data were collected in normoxia and after 5, 10, 20, and 30 minutes of normobaric hypoxia FI(O(2)) = 0.125. Relative dispersion (SD/mean) of the signal intensity was used as an index of perfusion heterogeneity. Oxygen saturation was not different between groups during hypoxia. Relative dispersion was not different between groups (HAPE-susceptible 0.94 +/- 0.05, HAPE-resistant 0.94 +/- 0.05, unselected 0.87 +/- 0.06; means +/- SEM) during normoxia, but it was increased by hypoxia in HAPE-susceptible (to 1.10 +/- 0.05 after 30 minutes, p < 0.0001) but not in HAPE-resistant (0.91 +/- 0.05) or unselected subjects (0.87 +/- 0.05). HAPE-susceptible individuals have increased pulmonary blood flow heterogeneity in acute hypoxia, consistent with uneven hypoxic pulmonary vasoconstriction.
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.200406-707OC