Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production

Mast cells, basophils, and eosinophils are myeloid cells that are distinguished by their capability to produce IL-4 and IL-13. However, it is not clear how this potential is related to the lineage differentiation of these subsets. In the present study we used bicistronic IL-4 reporter (4get) mice to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2005-01, Vol.174 (2), p.1063-1072
Hauptverfasser: Gessner, André, Mohrs, Katja, Mohrs, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mast cells, basophils, and eosinophils are myeloid cells that are distinguished by their capability to produce IL-4 and IL-13. However, it is not clear how this potential is related to the lineage differentiation of these subsets. In the present study we used bicistronic IL-4 reporter (4get) mice to directly visualize IL-4 expression by nonlymphoid cells in vitro and in vivo at the single-cell level. Our data show that frequent expression of both Il4 alleles is initiated and maintained during ontogeny by an IL-4Ralpha- or Stat6-independent mechanism. Despite the constitutive presence of cytokine transcripts in differentiated cells under steady state conditions, cytokine production is not detectable in the absence of stimulation. Moreover, mature mast cells, basophils, and eosinophils also constitutively express IL-13. Both preformed IL-4 and IL-13 mRNAs are sufficient for rapid cytokine production upon stimulation. Our data show that mast cells, basophils, and eosinophils are programmed for IL-4 and IL-13 expression early in ontogeny. These novel findings have important implications for the prevention and therapeutic intervention of allergic and asthmatic diseases.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.174.2.1063