Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes insights into the development of cell-based pacemakers
Human embryonic stem cells (hESCs) derived from blastocysts can propagate indefinitely in culture while maintaining pluripotency, including the ability to differentiate into cardiomyocytes (CMs); therefore, hESCs may provide an unlimited source of human CMs for cell-based therapies. Although CMs can...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2005-01, Vol.111 (1), p.11-20 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human embryonic stem cells (hESCs) derived from blastocysts can propagate indefinitely in culture while maintaining pluripotency, including the ability to differentiate into cardiomyocytes (CMs); therefore, hESCs may provide an unlimited source of human CMs for cell-based therapies. Although CMs can be derived from hESCs ex vivo, it remains uncertain whether a functional syncytium can be formed between donor and recipient cells after engraftment.
Using a combination of electrophysiological and imaging techniques, here we demonstrate that electrically active, donor CMs derived from hESCs that had been stably genetically engineered by a recombinant lentivirus can functionally integrate with otherwise-quiescent, recipient, ventricular CMs to induce rhythmic electrical and contractile activities in vitro. The integrated syncytium was responsive to the beta-adrenergic agonist isoproterenol as well as to other pharmacological agents such as lidocaine and ZD7288. Similarly, a functional hESC-derived pacemaker could be implanted in the left ventricle in vivo. Detailed optical mapping of the epicardial surface of guinea pig hearts transplanted with hESC-derived CMs confirmed the successful spread of membrane depolarization from the site of injection to the surrounding myocardium.
We conclude that electrically active, hESC-derived CMs are capable of actively pacing quiescent, recipient, ventricular CMs in vitro and ventricular myocardium in vivo. Our results may lead to an alternative or a supplemental method for correcting defects in cardiac impulse generation, such as cell-based pacemakers. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.CIR.0000151313.18547.A2 |