The effect of soluble complement receptor type 1 on acute humoral xenograft rejection in hDAF-transgenic pig-to-primate life-supporting kidney xenografts
: Background: In pig‐to‐nonhuman primate solid organ xenotransplantation using organs from donors transgenic for human decay‐accelerating factor (hDAF), the main type of rejection is antibody‐mediated (acute humoral xenograft rejection, AHXR). This occurs despite the complement‐regulatory function...
Gespeichert in:
Veröffentlicht in: | Xenotransplantation (Københaven) 2005-01, Vol.12 (1), p.20-29 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : Background: In pig‐to‐nonhuman primate solid organ xenotransplantation using organs from donors transgenic for human decay‐accelerating factor (hDAF), the main type of rejection is antibody‐mediated (acute humoral xenograft rejection, AHXR). This occurs despite the complement‐regulatory function of the transgene, neutralization of natural antibodies to Galα1–3Gal (Gal) using soluble glycoconjugates, and chronic immunosuppression. As complement components play a major role in graft destruction after antibody binding, we evaluated the efficacy of chronic complement inhibition by soluble complement receptor type 1 (TP10).
Methods: Life‐supporting hDAF‐transgenic kidney transplantation was performed in cynomolgus monkeys, using cyclophosphamide induction, and maintenance immunosuppression with cyclosporin A, mycophenolate sodium, and tapering steroids. Rejection was treated with bolus steroid injections: if not successful animals were terminated. Three groups were studied: in group 1 (n = 4) GAS914 (a soluble glycoconjugate comprising Gal on a poly‐L‐lysine backbone) was added before and after transplantation; group 2 (n = 2) received GAS914 as in group 1 and in addition TP10 before and after transplantation; in group 3 (n = 4) GAS914 was only given before transplantation and TP10 as in group 2. Monitoring included the regular assessment of anti‐porcine antibodies, complement activity (soluble C5b‐9), therapeutic drug monitoring, and graft histology.
Results: Survival in group 1 was 6, 12, 31 and 37 days, respectively, and in all four cases graft histology showed AHXR. The two animals in groups 2 survived 3 and 15 days, respectively, and similarly showed AHXR in graft histology. In group 3 two animals showed AHXR (10 and 37 days survival, respectively), and two others did not show AHXR (20 and 32 days survival, respectively). The diagnosis AHXR included the deposition of complement activation products in the graft, which were present at lower intensity in animals treated with TP10. In all animals GAS914 effectively neutralized circulating anti‐Gal antibody. Antibodies were detectable in the circulation of all animals using porcine erythrocytes in a hemolytic assay, although at lower levels than before transplantation. Soluble C5b‐9 was not detectable in the circulation of animals receiving TP10, and circulating TP10 concentrations in these animals were in a presumed pharmacologically active range.
Conclusions: The inclusion of TP10 in the immunosuppress |
---|---|
ISSN: | 0908-665X 1399-3089 |
DOI: | 10.1111/j.1399-3089.2004.00184.x |