Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program

Culturable bacteria were detected in deep-sea sediment samples collected from the Nankai Trough site 1173 (Ocean Drilling Program, ODP, Leg 190) at 4.15 m below the seafloor with 4791 m of overlying water. In this deep ocean near surface sediment, mainly fermentative heterotrophs, autotrophic acetog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2004-06, Vol.48 (3), p.357-367
Hauptverfasser: Toffin, Laurent, Webster, Gordon, Weightman, Andrew J, Fry, John C, Prieur, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Culturable bacteria were detected in deep-sea sediment samples collected from the Nankai Trough site 1173 (Ocean Drilling Program, ODP, Leg 190) at 4.15 m below the seafloor with 4791 m of overlying water. In this deep ocean near surface sediment, mainly fermentative heterotrophs, autotrophic acetogens and sulfate-reducing bacteria were enriched by using two different non-selective enrichment culture media. Culturable bacterial population shifts within the deep marine sediment enrichments were monitored by using denaturating gradient gel electrophoresis (DGGE). DGGE analysis revealed a decrease in the number of 16S rRNA gene fragments from high to low carbon concentrations, and from low to high dilution of inoculum, suggesting that fast-growing bacteria were numerically dominant in enrichment culture samples. The dominant 16S rRNA fragments observed in DGGE gels were assigned to the Firmicutes, Proteobacteria ( γ and δ subgroups) and Spirochaeta phyla. Continual sub-culture and purification resulted in two isolates which were phylogenetically identified as members of the genera Acetobacterium and Marinilactibacillus. Our results, which combine enrichment culturing with DGGE analysis, indicated that enrichment cultures derived from inoculum dilution and media with various concentrations of carbon could facilitate the detection and isolation of a greater number of environmentally relevant bacterial species than when using traditional enrichment techniques alone.
ISSN:0168-6496
1574-6941
DOI:10.1016/j.femsec.2004.02.009