Regularized quadratic cost function for oriented fringe-pattern filtering

We use the regularization theory in a Bayesian framework to derive a quadratic cost function for denoising fringe patterns. As prior constraints for the regularization problem, we propose a Markov random field model that includes information about the fringe orientation. In our cost function the reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2009-06, Vol.34 (11), p.1741-1743
Hauptverfasser: VILLA, Jesús, QUIROGA, Juan Antonio, DE LA ROSA, Ismael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the regularization theory in a Bayesian framework to derive a quadratic cost function for denoising fringe patterns. As prior constraints for the regularization problem, we propose a Markov random field model that includes information about the fringe orientation. In our cost function the regularization term imposes constraints to the solution (i.e., the filtered image) to be smooth only along the fringe's tangent direction. In this way as the fringe information and noise are conveniently separated in the frequency space, our technique avoids blurring the fringes. The attractiveness of the proposed filtering method is that the minimization of the cost function can be easily implemented using iterative methods. To show the performance of the proposed technique we present some results obtained by processing simulated and real fringe patterns.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.34.001741