Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation

Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2-D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2009-05, Vol.9 (10), p.2903-2907
Hauptverfasser: Degand, Hervé, Faber, Anne-Marie, Dauchot, Nicolas, Mingeot, Dominique, Watillon, Bernard, Cutsem, Pierre Van, Morsomme, Pierre, Boutry, and Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2-D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI-TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well-represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.200800744