Spin-echo micro-MRI of trabecular bone using improved 3D fast large-angle spin-echo (FLASE)

Fast large‐angle spin echo (FLASE) is a common pulse sequence designed for quantitative imaging of trabecular bone (TB) microarchitecture. However, imperfections in the nonselective phase‐reversal pulse render it prone to stimulated echo artifacts. The problem is further exacerbated at isotropic res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2009-05, Vol.61 (5), p.1114-1121
Hauptverfasser: Magland, J.F., Wald, M.J., Wehrli, F.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast large‐angle spin echo (FLASE) is a common pulse sequence designed for quantitative imaging of trabecular bone (TB) microarchitecture. However, imperfections in the nonselective phase‐reversal pulse render it prone to stimulated echo artifacts. The problem is further exacerbated at isotropic resolution. Here, a substantially improved RF‐spoiled FLASE sequence (sp‐FLASE) is described and its performance is illustrated with data at 1.5T and 3T. Additional enhancements include navigator echoes for translational motion sensing applied in a slice parallel to the imaging slab. Whereas recent work suggests the use of fully‐balanced FLASE (b‐FLASE) to be advantageous from a signal‐to‐noise ratio (SNR) point of view, evidence is provided here that the greater robustness of sp‐FLASE may outweigh the benefits of the minor SNR gain of b‐FLASE for the target application of TB imaging in the distal extremities, sites of exclusively fatty marrow. Results are supported by a theoretical Bloch equation analysis and the pulse sequence dependence of the effective T2 of triglyceride protons. Last, sp‐FLASE images are shown to provide detailed and reproducible visual depiction of trabecular networks in three dimensions at both anisotropic (137 × 137 × 410 μm3) and isotropic (160 × 160 × 160 μm3) resolutions in the human distal tibia in vivo. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.21905