Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques

Summary Objective To compare electroencephalographic spectral analysis obtained by periodogram (calculated by means of Fast Fourier Transform) and autoregressive (AR) modelling for the assessment of hepatic encephalopathy. Methods The mean dominant frequency (MDF) and the relative power of delta, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurophysiologie clinique 2009-04, Vol.39 (2), p.107-115
Hauptverfasser: Amodio, P, Orsato, R, Marchetti, P, Schiff, S, Poci, C, Angeli, P, Gatta, A, Sparacino, G, Toffolo, G.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 2
container_start_page 107
container_title Neurophysiologie clinique
container_volume 39
creator Amodio, P
Orsato, R
Marchetti, P
Schiff, S
Poci, C
Angeli, P
Gatta, A
Sparacino, G
Toffolo, G.M
description Summary Objective To compare electroencephalographic spectral analysis obtained by periodogram (calculated by means of Fast Fourier Transform) and autoregressive (AR) modelling for the assessment of hepatic encephalopathy. Methods The mean dominant frequency (MDF) and the relative power of delta, theta, alpha, and beta bands were computed by both techniques from the electroencephalograms (EEG) of 201 cirrhotics and were evaluated in the clinical and prognostic assessment of the patients. Results The values of all the five indexes computed by periodogram and AR modelling matched each other, but the latter provided stable values after the analysis of fewer epochs. Independently of the technique, the relative power of theta and alpha bands fitted the clinical data and had prognostic value. The relative power of beta and delta bands computed by AR modelling fitted more closely with clinical data fitted the clinical data more closely. Conclusions The electroencephalographic spectral indexes obtained by periodogram and AR modelling were found to be, on average, undistinguishable, but the latter appeared less sensitive to noise and provided a more reliable assessment of low-power bands.
doi_str_mv 10.1016/j.neucli.2009.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67278088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S098770530900032X</els_id><sourcerecordid>67278088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-86392420acaabe8998c641e07b0fbd9667021fb0d36bd9c872bcbaebca1037753</originalsourceid><addsrcrecordid>eNqFklGL1DAUhYMo7uzqPxDpi751vEkzTeuDsAy7Kiz4oIJvIU1vbcY2qbmtMD_Ff2vqDKv44lM48J1zwz2XsWccthx4-eqw9bjYwW0FQL0FsQUQD9iGq7LOFS_4Q7aBulK5gl1xwS6JDgAgi7p4zC54LUslJd-wnzcD2jkG9Ban3gzhazRT72xmvBmO5CjrQszmHjNDhEQj-jkLXdbjZOaE3fuS7I-vs30YJxMdBb9SPvg8STPiHH9nttlfkqZ1tBkypNmNKS6ZZrS9d98XpCfsUWcGwqfn94p9vr35tH-X3314-35_fZdbKXdzXpVFLaQAY41psKrrypaSI6gGuqaty1KB4F0DbVEmaSslGtsYbKzhUCi1K67Yy1PuFMM6d9ajI4vDYDyGhXSphKqgqhIoT6CNgShip6eYvh2PmoNeK9EHfapEr5VoEDpVkmzPz_lLM2L7x3TuIAEvzoAha4YuGm8d3XOCywp2skzcmxOHaRs_HEZN1q37b11Mi9RtcP_7yb8BifAuzfyGR6RDWGIqnTTXlAz643o-6_VAnS6nEF-KX7PHxfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67278088</pqid></control><display><type>article</type><title>Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Amodio, P ; Orsato, R ; Marchetti, P ; Schiff, S ; Poci, C ; Angeli, P ; Gatta, A ; Sparacino, G ; Toffolo, G.M</creator><creatorcontrib>Amodio, P ; Orsato, R ; Marchetti, P ; Schiff, S ; Poci, C ; Angeli, P ; Gatta, A ; Sparacino, G ; Toffolo, G.M</creatorcontrib><description>Summary Objective To compare electroencephalographic spectral analysis obtained by periodogram (calculated by means of Fast Fourier Transform) and autoregressive (AR) modelling for the assessment of hepatic encephalopathy. Methods The mean dominant frequency (MDF) and the relative power of delta, theta, alpha, and beta bands were computed by both techniques from the electroencephalograms (EEG) of 201 cirrhotics and were evaluated in the clinical and prognostic assessment of the patients. Results The values of all the five indexes computed by periodogram and AR modelling matched each other, but the latter provided stable values after the analysis of fewer epochs. Independently of the technique, the relative power of theta and alpha bands fitted the clinical data and had prognostic value. The relative power of beta and delta bands computed by AR modelling fitted more closely with clinical data fitted the clinical data more closely. Conclusions The electroencephalographic spectral indexes obtained by periodogram and AR modelling were found to be, on average, undistinguishable, but the latter appeared less sensitive to noise and provided a more reliable assessment of low-power bands.</description><identifier>ISSN: 0987-7053</identifier><identifier>EISSN: 1769-7131</identifier><identifier>DOI: 10.1016/j.neucli.2009.02.002</identifier><identifier>PMID: 19467441</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Adult ; Algorithms ; Analyse spectrale ; Autoregressive model ; Biological and medical sciences ; Cirrhose ; Cirrhosis ; EEG ; Electroencephalography - methods ; Encéphalopathie hépatique ; Female ; FFT ; Fourier Analysis ; Hepatic encephalopathy ; Hepatic Encephalopathy - blood ; Hepatic Encephalopathy - diagnosis ; Hepatic Encephalopathy - etiology ; Hepatic Encephalopathy - physiopathology ; Human viral diseases ; Humans ; Infectious diseases ; Liver Cirrhosis - complications ; Liver Cirrhosis - physiopathology ; Male ; Medical sciences ; Middle Aged ; Modèle autorégressif ; Neurology ; Prognosis ; Severity of Illness Index ; Spectral analysis ; Spectrum Analysis ; Statistics, Nonparametric ; Viral diseases ; Viral diseases of the nervous system</subject><ispartof>Neurophysiologie clinique, 2009-04, Vol.39 (2), p.107-115</ispartof><rights>Elsevier Masson SAS</rights><rights>2009 Elsevier Masson SAS</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-86392420acaabe8998c641e07b0fbd9667021fb0d36bd9c872bcbaebca1037753</citedby><cites>FETCH-LOGICAL-c445t-86392420acaabe8998c641e07b0fbd9667021fb0d36bd9c872bcbaebca1037753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucli.2009.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21480546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19467441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amodio, P</creatorcontrib><creatorcontrib>Orsato, R</creatorcontrib><creatorcontrib>Marchetti, P</creatorcontrib><creatorcontrib>Schiff, S</creatorcontrib><creatorcontrib>Poci, C</creatorcontrib><creatorcontrib>Angeli, P</creatorcontrib><creatorcontrib>Gatta, A</creatorcontrib><creatorcontrib>Sparacino, G</creatorcontrib><creatorcontrib>Toffolo, G.M</creatorcontrib><title>Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques</title><title>Neurophysiologie clinique</title><addtitle>Neurophysiol Clin</addtitle><description>Summary Objective To compare electroencephalographic spectral analysis obtained by periodogram (calculated by means of Fast Fourier Transform) and autoregressive (AR) modelling for the assessment of hepatic encephalopathy. Methods The mean dominant frequency (MDF) and the relative power of delta, theta, alpha, and beta bands were computed by both techniques from the electroencephalograms (EEG) of 201 cirrhotics and were evaluated in the clinical and prognostic assessment of the patients. Results The values of all the five indexes computed by periodogram and AR modelling matched each other, but the latter provided stable values after the analysis of fewer epochs. Independently of the technique, the relative power of theta and alpha bands fitted the clinical data and had prognostic value. The relative power of beta and delta bands computed by AR modelling fitted more closely with clinical data fitted the clinical data more closely. Conclusions The electroencephalographic spectral indexes obtained by periodogram and AR modelling were found to be, on average, undistinguishable, but the latter appeared less sensitive to noise and provided a more reliable assessment of low-power bands.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analyse spectrale</subject><subject>Autoregressive model</subject><subject>Biological and medical sciences</subject><subject>Cirrhose</subject><subject>Cirrhosis</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Encéphalopathie hépatique</subject><subject>Female</subject><subject>FFT</subject><subject>Fourier Analysis</subject><subject>Hepatic encephalopathy</subject><subject>Hepatic Encephalopathy - blood</subject><subject>Hepatic Encephalopathy - diagnosis</subject><subject>Hepatic Encephalopathy - etiology</subject><subject>Hepatic Encephalopathy - physiopathology</subject><subject>Human viral diseases</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Liver Cirrhosis - complications</subject><subject>Liver Cirrhosis - physiopathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Modèle autorégressif</subject><subject>Neurology</subject><subject>Prognosis</subject><subject>Severity of Illness Index</subject><subject>Spectral analysis</subject><subject>Spectrum Analysis</subject><subject>Statistics, Nonparametric</subject><subject>Viral diseases</subject><subject>Viral diseases of the nervous system</subject><issn>0987-7053</issn><issn>1769-7131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFklGL1DAUhYMo7uzqPxDpi751vEkzTeuDsAy7Kiz4oIJvIU1vbcY2qbmtMD_Ff2vqDKv44lM48J1zwz2XsWccthx4-eqw9bjYwW0FQL0FsQUQD9iGq7LOFS_4Q7aBulK5gl1xwS6JDgAgi7p4zC54LUslJd-wnzcD2jkG9Ban3gzhazRT72xmvBmO5CjrQszmHjNDhEQj-jkLXdbjZOaE3fuS7I-vs30YJxMdBb9SPvg8STPiHH9nttlfkqZ1tBkypNmNKS6ZZrS9d98XpCfsUWcGwqfn94p9vr35tH-X3314-35_fZdbKXdzXpVFLaQAY41psKrrypaSI6gGuqaty1KB4F0DbVEmaSslGtsYbKzhUCi1K67Yy1PuFMM6d9ajI4vDYDyGhXSphKqgqhIoT6CNgShip6eYvh2PmoNeK9EHfapEr5VoEDpVkmzPz_lLM2L7x3TuIAEvzoAha4YuGm8d3XOCywp2skzcmxOHaRs_HEZN1q37b11Mi9RtcP_7yb8BifAuzfyGR6RDWGIqnTTXlAz643o-6_VAnS6nEF-KX7PHxfE</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Amodio, P</creator><creator>Orsato, R</creator><creator>Marchetti, P</creator><creator>Schiff, S</creator><creator>Poci, C</creator><creator>Angeli, P</creator><creator>Gatta, A</creator><creator>Sparacino, G</creator><creator>Toffolo, G.M</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques</title><author>Amodio, P ; Orsato, R ; Marchetti, P ; Schiff, S ; Poci, C ; Angeli, P ; Gatta, A ; Sparacino, G ; Toffolo, G.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-86392420acaabe8998c641e07b0fbd9667021fb0d36bd9c872bcbaebca1037753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analyse spectrale</topic><topic>Autoregressive model</topic><topic>Biological and medical sciences</topic><topic>Cirrhose</topic><topic>Cirrhosis</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Encéphalopathie hépatique</topic><topic>Female</topic><topic>FFT</topic><topic>Fourier Analysis</topic><topic>Hepatic encephalopathy</topic><topic>Hepatic Encephalopathy - blood</topic><topic>Hepatic Encephalopathy - diagnosis</topic><topic>Hepatic Encephalopathy - etiology</topic><topic>Hepatic Encephalopathy - physiopathology</topic><topic>Human viral diseases</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Liver Cirrhosis - complications</topic><topic>Liver Cirrhosis - physiopathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Modèle autorégressif</topic><topic>Neurology</topic><topic>Prognosis</topic><topic>Severity of Illness Index</topic><topic>Spectral analysis</topic><topic>Spectrum Analysis</topic><topic>Statistics, Nonparametric</topic><topic>Viral diseases</topic><topic>Viral diseases of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodio, P</creatorcontrib><creatorcontrib>Orsato, R</creatorcontrib><creatorcontrib>Marchetti, P</creatorcontrib><creatorcontrib>Schiff, S</creatorcontrib><creatorcontrib>Poci, C</creatorcontrib><creatorcontrib>Angeli, P</creatorcontrib><creatorcontrib>Gatta, A</creatorcontrib><creatorcontrib>Sparacino, G</creatorcontrib><creatorcontrib>Toffolo, G.M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurophysiologie clinique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodio, P</au><au>Orsato, R</au><au>Marchetti, P</au><au>Schiff, S</au><au>Poci, C</au><au>Angeli, P</au><au>Gatta, A</au><au>Sparacino, G</au><au>Toffolo, G.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques</atitle><jtitle>Neurophysiologie clinique</jtitle><addtitle>Neurophysiol Clin</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>2</issue><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0987-7053</issn><eissn>1769-7131</eissn><abstract>Summary Objective To compare electroencephalographic spectral analysis obtained by periodogram (calculated by means of Fast Fourier Transform) and autoregressive (AR) modelling for the assessment of hepatic encephalopathy. Methods The mean dominant frequency (MDF) and the relative power of delta, theta, alpha, and beta bands were computed by both techniques from the electroencephalograms (EEG) of 201 cirrhotics and were evaluated in the clinical and prognostic assessment of the patients. Results The values of all the five indexes computed by periodogram and AR modelling matched each other, but the latter provided stable values after the analysis of fewer epochs. Independently of the technique, the relative power of theta and alpha bands fitted the clinical data and had prognostic value. The relative power of beta and delta bands computed by AR modelling fitted more closely with clinical data fitted the clinical data more closely. Conclusions The electroencephalographic spectral indexes obtained by periodogram and AR modelling were found to be, on average, undistinguishable, but the latter appeared less sensitive to noise and provided a more reliable assessment of low-power bands.</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><pmid>19467441</pmid><doi>10.1016/j.neucli.2009.02.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0987-7053
ispartof Neurophysiologie clinique, 2009-04, Vol.39 (2), p.107-115
issn 0987-7053
1769-7131
language eng
recordid cdi_proquest_miscellaneous_67278088
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adult
Algorithms
Analyse spectrale
Autoregressive model
Biological and medical sciences
Cirrhose
Cirrhosis
EEG
Electroencephalography - methods
Encéphalopathie hépatique
Female
FFT
Fourier Analysis
Hepatic encephalopathy
Hepatic Encephalopathy - blood
Hepatic Encephalopathy - diagnosis
Hepatic Encephalopathy - etiology
Hepatic Encephalopathy - physiopathology
Human viral diseases
Humans
Infectious diseases
Liver Cirrhosis - complications
Liver Cirrhosis - physiopathology
Male
Medical sciences
Middle Aged
Modèle autorégressif
Neurology
Prognosis
Severity of Illness Index
Spectral analysis
Spectrum Analysis
Statistics, Nonparametric
Viral diseases
Viral diseases of the nervous system
title Electroencephalographic analysis for the assessment of hepatic encephalopathy: Comparison of non-parametric and parametric spectral estimation techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroencephalographic%20analysis%20for%20the%20assessment%20of%20hepatic%20encephalopathy:%20Comparison%20of%20non-parametric%20and%20parametric%20spectral%20estimation%20techniques&rft.jtitle=Neurophysiologie%20clinique&rft.au=Amodio,%20P&rft.date=2009-04-01&rft.volume=39&rft.issue=2&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0987-7053&rft.eissn=1769-7131&rft_id=info:doi/10.1016/j.neucli.2009.02.002&rft_dat=%3Cproquest_cross%3E67278088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67278088&rft_id=info:pmid/19467441&rft_els_id=1_s2_0_S098770530900032X&rfr_iscdi=true