Molecular View of the Interaction between ι-Carrageenan and a Phospholipid Film and Its Role in Enzyme Immobilization

Proteins incorporated into phospholipid Langmuir−Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2009-05, Vol.113 (21), p.7491-7497
Hauptverfasser: Nobre, Thatyane M, de Sousa e Silva, Heurison, Furriel, Rosa P. M, Leone, Francisco A, Miranda, Paulo B, Zaniquelli, Maria Elisabete D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins incorporated into phospholipid Langmuir−Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir−Blodgett (LB) films was mediated by the anionic polysaccharide ι-carrageenan (ι-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:ι-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp900841p