Effect of hypergravity on carboanhydrase reactivity in inner ear ionocytes of developing cichlid fish

It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralization mainly depends on the enzyme carboanhydrase (CA), which is responsible for the provision of the pH-value necessary for calcium carbonate deposition. Larval si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2004, Vol.33 (8), p.1386-1389
Hauptverfasser: Beier, M., Anken, R.H., Rahmann, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralization mainly depends on the enzyme carboanhydrase (CA), which is responsible for the provision of the pH-value necessary for calcium carbonate deposition. Larval siblings of cichlid fish ( Oreochromis mossambicus) were subjected to hypergravity (3g, hg; 6 h) during development and separated into normally and kinetotically swimming individuals following the transfer to 1g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CA was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. It was found that both the total macular CA-reactivity as well as the difference in reactivities between the left and the right maculae (asymmetry) were significantly lower (1) in experimental animals as compared to the 1g controls and (2) in normally swimming hg-animals as compared to the kinetotically behaving hg-fish. The results are in complete agreement with earlier studies, according to which hypergravity induces a decrease of otolith growth and the otolithic calcium incorporation (visualized using the calcium-tracer alizarin complexone) of kinetotically swimming hg-fish was higher as compared to normally behaving hyper-g animals. The present study thus strongly supports the concept that a regulatory mechanism, which adjusts otolith size and asymmetry as well as otolithic calcium carbonate incorporation towards the gravity vector, acts via activation/deactivation of macular CA.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2003.09.041