An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer

The current paper describes the development and characterization of a pillar array chip that is constructed out of a sandwich of cyclo olefin polymer (COP) sheets. The silicon master of a 5 cm long pillar array was embossed into the COP, yielding 4.3 microm deep pillars of 15.3 microm diameter with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2009-01, Vol.9 (11), p.1511-1516
Hauptverfasser: Illa, Xavi, De Malsche, Wim, Bomer, Johan, Gardeniers, Han, Eijkel, Jan, Morante, Joan Ramon, Romano-Rodríguez, Albert, Desmet, Gert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current paper describes the development and characterization of a pillar array chip that is constructed out of a sandwich of cyclo olefin polymer (COP) sheets. The silicon master of a 5 cm long pillar array was embossed into the COP, yielding 4.3 microm deep pillars of 15.3 microm diameter with an external porosity of 43 % and a well designed sidewall region to avoid side wall induced band broadening. A closed channel configuration was obtained by pressure assisted thermal bonding to a non-processed COP lid. Injection of coumarin dye plugs and detection with a fluorescence microscope showed very close agreement of this channel configuration to theoretical expectations in terms of band broadening. This agreement is due to the low taper, the optimized sidewall region and the excellent bonding quality between the two polymer sheets, even at the pillar area. Under non-retained conditions (pure methanol as mobile phase), plate heights as low as 4 microm were obtained. Under retained conditions, using the native hydrophobic properties of the COP channel (in 70/30 v/v water/methanol mixture as mobile phase), a minimum plate height of 6 microm was obtained. A 4 component separation was successfully achieved, demonstrating that COP is a cheap and efficient alternative for silicon and silica based liquid chromatography formats.
ISSN:1473-0197
1473-0189
DOI:10.1039/b818918h