The Binding of Factor H to a Complex of Physiological Polyanions and C3b on Cells Is Impaired in Atypical Hemolytic Uremic Syndrome

Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self-surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2009-06, Vol.182 (11), p.7009-7018
Hauptverfasser: Ferreira, Viviana P, Herbert, Andrew P, Cortes, Claudio, McKee, Kristi A, Blaum, Barbel S, Esswein, Stefan T, Uhrin, Dusan, Barlow, Paul N, Pangburn, Michael K, Kavanagh, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self-surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clustering toward the C terminus of fH may disrupt interactions with surface-associated C3b or polyanions and thereby diminish the ability of fH to regulate complement. To test this, we compared a recombinant protein encompassing CCP 19-20 with 16 mutants. The mutations had only very limited and localized effects on protein structure. Although we found four aHUS-linked fH mutations that decreased binding to C3b and/or to heparin (a model compound for cell surface polyanionic carbohydrates), we identified five aHUS-associated mutants with increased affinity for either or both ligands. Strikingly, these variable affinities for the individual ligands did not correlate with the extent to which all the aHUS-associated mutants were found to be impaired in a more physiological assay that measured their ability to inhibit cell surface complement functions of full-length fH. Taken together, our data suggest that disruption of a complex fH-self-surface recognition process, involving a balance of affinities for protein and physiological carbohydrate ligands, predisposes to aHUS.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.0804031