Coordinated machine learning and decision support for situation awareness
Domains such as force protection require an effective decision maker to maintain a high level of situation awareness. A system that combines humans with neural networks is a desirable approach. Furthermore, it is advantageous for the calculation engine to operate in three learning modes: supervised...
Gespeichert in:
Veröffentlicht in: | Neural networks 2009-04, Vol.22 (3), p.316-325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Domains such as force protection require an effective decision maker to maintain a high level of situation awareness. A system that combines humans with neural networks is a desirable approach. Furthermore, it is advantageous for the calculation engine to operate in three learning modes: supervised for initial training and known updating, reinforcement for online operational improvement, and unsupervised in the absence of all external signaling. An Adaptive Resonance Theory based architecture capable of seamlessly switching among the three types of learning is discussed that can be used to help optimize the decision making of a human operator in such a scenario. This is followed by a situation assessment module. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2009.03.013 |