Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow

Pressure-induced skin blood flow responses measured via laser Doppler flowmetry are commonly reported in the time domain. The usefulness of spectral analysis in examining blood flow control mechanisms has been demonstrated, but traditional Fourier analysis does not provide sufficient resolution to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rehabilitation research and development 2004-11, Vol.41 (6A), p.797-806
Hauptverfasser: Geyer, Mary Jo, Jan, Yih-Kuen, Brienza, David M, Boninger, Michael L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pressure-induced skin blood flow responses measured via laser Doppler flowmetry are commonly reported in the time domain. The usefulness of spectral analysis in examining blood flow control mechanisms has been demonstrated, but traditional Fourier analysis does not provide sufficient resolution to reveal characteristic low frequencies. Time-frequency (wavelet) analysis was performed on 10 subjects' sacral skin blood flow responses to heating (45 degrees C) with improved resolution. Five frequency bands were identified (0.008-0.02 Hz, 0.02-0.05 Hz, 0.05-0.15 Hz, 0.15-0.4 Hz, and 0.4-2.0 Hz) corresponding to metabolic, neurogenic, myogenic, respiratory, or cardiac origins. Significant differences were observed in the mean normalized power of the metabolic (p < 0.01) and myogenic frequency bands (p < 0.01) between preheating and maximal heating and preheating and postheating periods. Power increased for the metabolic frequency and decreased for the myogenic frequency. Wavelet analysis successfully characterized thermoregulatory control mechanisms by revealing the contributions of the physiological rhythms embedded in the blood flow signal.
ISSN:0748-7711
1938-1352
DOI:10.1682/JRRD.2003.10.0159