On the Accuracy of Isocenter Verification with kV Imaging in Stereotactic Radiosurgery

Background and Purpose: Modern medical linear accelerators (linacs) are equipped with X-ray systems, which allow to check the patient’s position just prior to treatment. Their usefulness for stereotactic radiosurgery (SRS) depends on how accurately they allow to determine the deviation between the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strahlentherapie und Onkologie 2009-05, Vol.185 (5), p.325-330
Hauptverfasser: Wiehle, Rolf, Koth, Hans-Jürgen, Nanko, Norbert, Grosu, Anca-Ligia, Hodapp, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Purpose: Modern medical linear accelerators (linacs) are equipped with X-ray systems, which allow to check the patient’s position just prior to treatment. Their usefulness for stereotactic radiosurgery (SRS) depends on how accurately they allow to determine the deviation between the actual and planned isocenter positions. This accuracy was investigated with measurements using two different phantoms (Figures 1 and 2). Material and Methods: After precisely aligning a phantom onto the linac isocenter, two perpendicular X-rays or a cone-beam CT (CBCT) are taken, and the isocenter position is deduced from this data. The deviation of the thereby gained position from the setup isocenter is taken as a measure for the uncertainty of this method. Results: Isocenter verification with two orthogonal X-rays (Figure 4) achieves accuracies of better than 1 mm (Table 3). The distance between the isocenters of the CBCT and the linac (Figure 3) is in the order of 1 mm, but remains constant on the time scale of 1 week (Table 1) and may therefore be taken into account. The uncertainty after correction is below 0.2 mm. Conclusion: kV imaging with the patient in treatment position allows to verify the isocenter position with submillimeter precision, and therefore offers a supplemental test, suitable for SRS, which takes all positional uncertainties into account.
ISSN:0179-7158
1439-099X
DOI:10.1007/s00066-009-1871-5