Validation of an atomic absorption rubidium ion efflux assay for KCNQ/M-channels using the ion Channel Reader 8000

M-channels (M-current), encoded by KCNQ2/3 K(+) channel genes, have emerged as novel drug targets for a number of neurological disorders. The lack of direct high throughput assays combined with the low throughput of conventional electrophysiology (EP) has impeded rapid screening and evaluation of K(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assay and drug development technologies 2004-10, Vol.2 (5), p.525-534
Hauptverfasser: Wang, Kewei, McIlvain, Beal, Tseng, Eugene, Kowal, Dianne, Jow, Flora, Shen, Ru, Zhang, Howard, Shan, Qin Jennifer, He, Lan, Chen, Diana, Lu, Qiang, Dunlop, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:M-channels (M-current), encoded by KCNQ2/3 K(+) channel genes, have emerged as novel drug targets for a number of neurological disorders. The lack of direct high throughput assays combined with the low throughput of conventional electrophysiology (EP) has impeded rapid screening and evaluation of K(+)-channel modulators. Development of a sensitive and efficient assay for the direct measurement of M-current activity is critical for identifying novel M-channel modulators and subsequent investigation of their therapeutic potential. Using a stable CHO cell line expressing rat KCNQ2/3 K(+) channels confirmed by EP, we have developed and validated a nonradioactive rubidium (Rb(+)) efflux assay in a 96-well plate format. The Rb(+) efflux assay directly measures the activity of functional channels by atomic absorption spectroscopy using the automated Ion Channel Reader (ICR) 8000. The stimulated Rb(+) efflux from KCNQ2/3-expressing cells was blocked by the channel blockers XE991 and linopirdine with IC(50) values of 0.15 microM and 1.3 microM, respectively. Twelve compounds identified as KCNQ2/3 openers were further assessed in this assay, and their EC(50) values were compared with those obtained with EP. A higher positive correlation coefficient between these two assays (r = 0.60) was observed than that between FlexStation membrane potential and EP assays (r = 0.23). To simplify the assay and increase the throughput, we demonstrate that EC(50) values obtained by measuring Rb(+) levels in the supernatant are as robust and consistent as those obtained from the ratio of Rb(+) in supernatant/lysate. By measuring the supernatant only, the throughput of ICR8000 in an eight-point titration is estimated to be 40 compounds per day, which is suitable for a secondary confirmation assay.
ISSN:1540-658X
1557-8127
DOI:10.1089/adt.2004.2.525