Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires

A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM−STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2009-05, Vol.9 (5), p.1824-1829
Hauptverfasser: Andzane, Jana, Petkov, Nikolay, Livshits, Aleksandrs I, Boland, John J, Holmes, Justin D, Erts, Donats
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1829
container_issue 5
container_start_page 1824
container_title Nano letters
container_volume 9
creator Andzane, Jana
Petkov, Nikolay
Livshits, Aleksandrs I
Boland, John J
Holmes, Justin D
Erts, Donats
description A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM−STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. The higher resistivity of Ge nanowires, compared to carbon nanotubes, provides potential application of these 1D nanostructures in high-voltage devices.
doi_str_mv 10.1021/nl8037807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67231007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67231007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-b08528323639f64b4edcec6eb0f9db1b20b6ab25aeecfbc0b431f088252643e73</originalsourceid><addsrcrecordid>eNptkE1PwzAMhiMEYjA48AdQLyBxKDgfTdsjDBhIE1zGuUpSV3Rqm5GsTPx7MlZtF0627Md-pYeQCwq3FBi965oMeJpBekBOaMIhlnnODnd9Jkbk1PsFAOQ8gWMyojlnXKTyhEznaxvP0bV1p5roTXUWGzQrZ1s0n6qrTZg-4ndt0EcPymMZ2S6aBj7s-vbvYF079GfkqFKNx_OhjsnH89N88hLP3qevk_tZrLjgq1hDlrAshEueV1JogaVBI1FDlZeaagZaKs0ShWgqbUALTivIMpYwKTimfEyut3-Xzn716FdFW3uDTaM6tL0vZMo4BdiAN1vQOOu9w6pYurpV7qegUGysFTtrgb0cnva6xXJPDpoCcDUAygcjlVOdqf2OY1TkSSbpnlPGFwvbuyDV_xP4C3DTf_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67231007</pqid></control><display><type>article</type><title>Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires</title><source>ACS Publications</source><creator>Andzane, Jana ; Petkov, Nikolay ; Livshits, Aleksandrs I ; Boland, John J ; Holmes, Justin D ; Erts, Donats</creator><creatorcontrib>Andzane, Jana ; Petkov, Nikolay ; Livshits, Aleksandrs I ; Boland, John J ; Holmes, Justin D ; Erts, Donats</creatorcontrib><description>A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM−STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. The higher resistivity of Ge nanowires, compared to carbon nanotubes, provides potential application of these 1D nanostructures in high-voltage devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl8037807</identifier><identifier>PMID: 19323476</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Micro- and nanoelectromechanical devices (mems/nems) ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Nano letters, 2009-05, Vol.9 (5), p.1824-1829</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-b08528323639f64b4edcec6eb0f9db1b20b6ab25aeecfbc0b431f088252643e73</citedby><cites>FETCH-LOGICAL-a343t-b08528323639f64b4edcec6eb0f9db1b20b6ab25aeecfbc0b431f088252643e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl8037807$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl8037807$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21495861$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19323476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andzane, Jana</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><creatorcontrib>Livshits, Aleksandrs I</creatorcontrib><creatorcontrib>Boland, John J</creatorcontrib><creatorcontrib>Holmes, Justin D</creatorcontrib><creatorcontrib>Erts, Donats</creatorcontrib><title>Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM−STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. The higher resistivity of Ge nanowires, compared to carbon nanotubes, provides potential application of these 1D nanostructures in high-voltage devices.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwzAMhiMEYjA48AdQLyBxKDgfTdsjDBhIE1zGuUpSV3Rqm5GsTPx7MlZtF0627Md-pYeQCwq3FBi965oMeJpBekBOaMIhlnnODnd9Jkbk1PsFAOQ8gWMyojlnXKTyhEznaxvP0bV1p5roTXUWGzQrZ1s0n6qrTZg-4ndt0EcPymMZ2S6aBj7s-vbvYF079GfkqFKNx_OhjsnH89N88hLP3qevk_tZrLjgq1hDlrAshEueV1JogaVBI1FDlZeaagZaKs0ShWgqbUALTivIMpYwKTimfEyut3-Xzn716FdFW3uDTaM6tL0vZMo4BdiAN1vQOOu9w6pYurpV7qegUGysFTtrgb0cnva6xXJPDpoCcDUAygcjlVOdqf2OY1TkSSbpnlPGFwvbuyDV_xP4C3DTf_o</recordid><startdate>20090513</startdate><enddate>20090513</enddate><creator>Andzane, Jana</creator><creator>Petkov, Nikolay</creator><creator>Livshits, Aleksandrs I</creator><creator>Boland, John J</creator><creator>Holmes, Justin D</creator><creator>Erts, Donats</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090513</creationdate><title>Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires</title><author>Andzane, Jana ; Petkov, Nikolay ; Livshits, Aleksandrs I ; Boland, John J ; Holmes, Justin D ; Erts, Donats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-b08528323639f64b4edcec6eb0f9db1b20b6ab25aeecfbc0b431f088252643e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andzane, Jana</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><creatorcontrib>Livshits, Aleksandrs I</creatorcontrib><creatorcontrib>Boland, John J</creatorcontrib><creatorcontrib>Holmes, Justin D</creatorcontrib><creatorcontrib>Erts, Donats</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andzane, Jana</au><au>Petkov, Nikolay</au><au>Livshits, Aleksandrs I</au><au>Boland, John J</au><au>Holmes, Justin D</au><au>Erts, Donats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2009-05-13</date><risdate>2009</risdate><volume>9</volume><issue>5</issue><spage>1824</spage><epage>1829</epage><pages>1824-1829</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM−STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. The higher resistivity of Ge nanowires, compared to carbon nanotubes, provides potential application of these 1D nanostructures in high-voltage devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19323476</pmid><doi>10.1021/nl8037807</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2009-05, Vol.9 (5), p.1824-1829
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_67231007
source ACS Publications
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Materials science
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Micro- and nanoelectromechanical devices (mems/nems)
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Terminal%20Nanoelectromechanical%20Devices%20Based%20on%20Germanium%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Andzane,%20Jana&rft.date=2009-05-13&rft.volume=9&rft.issue=5&rft.spage=1824&rft.epage=1829&rft.pages=1824-1829&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl8037807&rft_dat=%3Cproquest_cross%3E67231007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67231007&rft_id=info:pmid/19323476&rfr_iscdi=true