Application of Hot-Melt Coating Process for Designing a Lipid Based Controlled Release Drug Delivery System for Highly Aqueous Soluble Drugs
Hot-melt coating process (HMCP) was applied to develop a lipid based oral controlled release matrix system (tablet) to deliver highly aqueous soluble drugs using paracetamol as a model drug. Granules prepared from paracetamol and particular filler were coated with different levels of lipid and then...
Gespeichert in:
Veröffentlicht in: | Chemical & Pharmaceutical Bulletin 2009/05/01, Vol.57(5), pp.464-471 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hot-melt coating process (HMCP) was applied to develop a lipid based oral controlled release matrix system (tablet) to deliver highly aqueous soluble drugs using paracetamol as a model drug. Granules prepared from paracetamol and particular filler were coated with different levels of lipid and then compressed into tablets to get controlled/sustained delivery of the drug over an optimum period. Process parameters were optimized with particular focus on fluidization pattern during HMCP proposing a ‘design space’ with ‘Quality by Design’ (QbD) concept in mind. The results demonstrated that the granule composition influenced the drug release pattern, and the rate of release could be manipulated by varying the amount of lipid in the formulation. The in vitro release profile of the drug was pH-independent and the most promising release profile was obtained from tablets prepared from granules with the water-soluble filler, lactose, and coated at 9% (w/w) level with a lipid, glyceryl behanate. In vivo plasma profiles of the drug were predicted from the in vitro release profile data by convolution analysis which confirmed that the lactose based formulation with 9% (w/w) lipid coating on the granules would be suitable for controlled delivery of the drug over a period of 12 h making the formulation suitable for highly water soluble drug candidates like paracetamol with twice daily dose regimen. Moreover, the dissolution data adequately fitted into Higuchi model suggesting that the drug release occurred predominantly by diffusion. |
---|---|
ISSN: | 0009-2363 1347-5223 |
DOI: | 10.1248/cpb.57.464 |