Direct conductance measurements of short single DNA molecules in dry conditions
We present a study of electronic transport in short (12-base-pair) DNA duplexes covalently bonded (via thiol groups) to two gold electrodes obtained by a mechanically controllable break junction (MCJB) technique in dry conditions. A large number of DNA junctions have been repeatedly formed in order...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2009-03, Vol.20 (11), p.115502-115502 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a study of electronic transport in short (12-base-pair) DNA duplexes covalently bonded (via thiol groups) to two gold electrodes obtained by a mechanically controllable break junction (MCJB) technique in dry conditions. A large number of DNA junctions have been repeatedly formed in order to obtain a conductance histogram that reveals a peak which corresponds to the conductance of a single DNA molecule. We observed that the conductivity of a DNA increases upon increasing the content of G:C base pairs in the duplex. With our method we are able to obtain a reliable value of a single DNA conductance and subsequently measure its current-voltage (I-V) characteristics. In contrast to the electronic transport measurements performed with long DNA sequences (hundreds of base pairs) where the obtained conductance values vary a lot with environmental conditions, our values obtained for the short DNA sequences are consistent with the values reported for comparable sequences in aqueous solution. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/20/11/115502 |