NMR and Pulsed Field Gradient NMR Approach of Water Sorption Properties in Nafion at Low Temperature

The water uptake and the water self-diffusion coefficient were measured in Nafion membranes at subzero temperatures. NMR spectroscopy was used to precisely quantify the actual concentration of water in membranes as a function of the temperature and their hydration rates at room temperature. We find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2009-05, Vol.113 (19), p.6710-6717
Hauptverfasser: Guillermo, Armel, Gebel, Gérard, Mendil-Jakani, Hakima, Pinton, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The water uptake and the water self-diffusion coefficient were measured in Nafion membranes at subzero temperatures. NMR spectroscopy was used to precisely quantify the actual concentration of water in membranes as a function of the temperature and their hydration rates at room temperature. We find that below 273 K the water concentration decreases with temperature to reach, at around 220 K, a limit value independent of the initial concentration. This regime is observed if the concentration at room temperature is higher than 10%. Below this concentration no membrane deswelling was observed. The water self-diffusion coefficient, measured by pulsed field gradient NMR in function of the temperature, is determined by the actual concentration C(T) whatever the concentration at room temperature. The concentration variation is attributed to a decrease in the relative humidity RH(T) of the water vapor surrounding the membrane induced by the simultaneous presence of supercooled water inside the membrane and ice outside the membrane.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp8110452