Ectopic expression of histone H2AX mutants reveals a role for its post-translational modifications
Recent evidence from a wide variety of biological systems has indicated important regulatory roles for post-translation histone modifications in cellular processes such as regulation of gene expression, DNA damage response and recombination. Phosphorylation of histone H2AX at serine 139 is a critica...
Gespeichert in:
Veröffentlicht in: | Cancer biology & therapy 2009-03, Vol.8 (5), p.422-434 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent evidence from a wide variety of biological systems has indicated important regulatory roles for post-translation histone modifications in cellular processes such as regulation of gene expression, DNA damage response and recombination. Phosphorylation of histone H2AX at serine 139 is a critical event in the response to DNA damage, but the functional implications of this modification are not yet clear. To investigate the role of H2AX phosphorylation we ectopically expressed epitope-tagged H2AX or mutants at the phosphorylation site. GFP-tagged wild type H2AX, H2AX Ser139Ala or H2AX Ser139Glu proteins were efficiently expressed, localizing exclusively to the interphase nucleus and to condensed chromosomes during mitosis. Biochemical fractionation indicated that epitope-tagged H2AX proteins are incorporated into nucleosomes. Expression of H2AX Ser139Ala, which disrupts the phosphorylation site partially suppressed early G(2)/M arrest following ionizing radiation, and cells expressing this mutant were more sensitive to DNA damage. Conversely, expression of H2AX Ser139Glu, designed as phosphorylation mimic, induced a decrease in the number of cells in mitosis in the absence of DNA damage. Interestingly, this decrease induced by H2AX Ser139Glu was independent of the formation of 53BP1-containing foci and was partially suppressed in CHK2-deficient cells, suggesting a role for CHK2 in this process. Further analyses revealed that expression of either mutant lead to apoptosis and induced higher caspase-3/7 activity compared to expression of wild type H2AX. In addition, we also identified Lys119 as a site for ubiquitination that controls H2AX half-life. Phosphorylation of Ser139 and ubiquitination of K119 are not interdependent. Taken together these results demonstrate a role for H2AX Serine 139 phosphorylation in cell cycle regulation and apoptosis, and for Lysine 119 in the control of H2AX turnover. |
---|---|
ISSN: | 1555-8576 |
DOI: | 10.4161/cbt.8.5.7592 |