cDNA sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an opisthobranch gastropod
By protein immunobiochemistry and cDNA sequencing, we have found only a single hemocyanin polypeptide in an opisthobranch gastropod, the sea hare Aplysia californica, which contrasts with previously studied prosobranch gastropods, which express two distinct isoforms of this extracellular respiratory...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 2004-10, Vol.59 (4), p.536-545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By protein immunobiochemistry and cDNA sequencing, we have found only a single hemocyanin polypeptide in an opisthobranch gastropod, the sea hare Aplysia californica, which contrasts with previously studied prosobranch gastropods, which express two distinct isoforms of this extracellular respiratory protein. We have cloned and sequenced the cDNA encoding the complete polypeptide of Aplysia californica hemocyanin (AcH). The cDNA comprises 11,433 bp, encompassing a 5'UTR of 77 bp, a 3'UTR of 1057 bp, and an open reading frame for a signal peptide of 20 amino acids plus a polypeptide of 3412 amino acids (Mr ca. 387 kDa). This polypeptide is the subunit of the cylindrical native hemocyanin (Mr ca. 8 MDa). It comprises eight different functional units (FUs: a, b, c, d, e, f, g, h) that have been identified immunobiochemically after limited proteolysis of AcH purified from the hemolymph. Each FU shows a highly conserved copper-A and copper-B site for reversible oxygen binding. FU AcH-h carries a specific C-terminal extension of ca. 100 amino acids that include two cysteines that may be utilized for disulfide bridge formation. Potential N-glycosylation sites are present in six FUs but lacking in AcH-b and AcH-c. On the basis of multiple sequence alignments, phylogenetic trees and a statistically firm molecular clock were calculated. The latter suggests that the last common ancestor of Haliotis and Aplysia lived 373+/-47 million years ago, in convincing agreement with fossil records from the early Devonian. However, the gene duplication yielding the two distinct hemocyanin isoforms found today in Haliotis tuberculata occurred 343+/-43 million years ago. |
---|---|
ISSN: | 0022-2844 1432-1432 |
DOI: | 10.1007/s00239-004-2646-3 |