Multivariate methods to identify cancer-related symptom clusters

Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in nursing & health 2009-06, Vol.32 (3), p.345-360
Hauptverfasser: Skerman, Helen M., Yates, Patsy M., Battistutta, Diana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database search of Medline, CINAHL, and PsycINFO, limited to articles published in English, 10 years prior to March 2007, 13 cross‐sectional studies met the inclusion criteria. Conceptually, common factor analysis (FA) and hierarchical cluster analysis (HCA) are appropriate for symptom cluster identification, not principal component analysis. As a basis for new directions in symptom management, FA methods are more appropriate than HCA. Principal axis factoring or maximum likelihood factoring, the scree plot, oblique rotation, and clinical interpretation are recommended approaches to symptom cluster identification. © 2009 Wiley Periodicals, Inc. Res Nurs Health 32:345–360, 2009
ISSN:0160-6891
1098-240X
DOI:10.1002/nur.20323