Genetic diversity of Mexican brook lamprey Lampetra (Tetrapleurodon) geminis (Alvarez del Villar, 1966)
Lampreys are the only surviving representatives of the oldest known vertebrates. The Mexican lamprey L. geminis (nonparasitic), is particularly interesting, because it is an endemic, biogeographical relict, and a threatened species. RAPD markers were used to describe genetic diversity in L. geminis....
Gespeichert in:
Veröffentlicht in: | Genetica 2004-11, Vol.122 (3), p.325-333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lampreys are the only surviving representatives of the oldest known vertebrates. The Mexican lamprey L. geminis (nonparasitic), is particularly interesting, because it is an endemic, biogeographical relict, and a threatened species. RAPD markers were used to describe genetic diversity in L. geminis. A total of 77 specimens were collected from five populations, three in the Río Grande de Morelia-Cuitzeo basin and two in the Río Duero-Lerma-Chapala basin, México. Eighty-eight RAPD markers were obtained from eight primers. Genetic diversity within each population was estimated using Shannon's index (S), heterozygosity (H) and gene diversity (h). These estimates revealed significant variation within populations, although a variance homogeneity test (HOMOVA) showed no significant differences among populations or between basins. Nei genetic distance values indicate a low genetic differentiation among populations. Analysis of molecular variance (AMOVA) indicates that most of the genetic diversity occurs within populations (91.4%), but that a statistically significant amount is found among populations (P < 0.001). Principal coordinates and cluster analyses of RAPD phenotypes show that specimens are not grouped by geographical origin. The genetic diversity found within L. geminis populations may be explained by its breeding system and an overlapping of generations. The scarce genetic differentiation among populations is likely to the low rate of DNA change that characterizes the lamprey group. |
---|---|
ISSN: | 0016-6707 1573-6857 |
DOI: | 10.1007/s10709-004-3127-8 |