Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-α activity in cultured primary hepatocytes
The effect of liver type fatty acid binding protein (L-FABP) gene ablation on the uptake and distribution of long chain fatty acids (LCFA) to the nucleus by real-time laser scanning confocal imaging and peroxisome proliferator-activated receptor-α (PPARα) activity was examined in cultured primary he...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 2009-05, Vol.485 (2), p.160-173 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of liver type fatty acid binding protein (L-FABP) gene ablation on the uptake and distribution of long chain fatty acids (LCFA) to the nucleus by real-time laser scanning confocal imaging and peroxisome proliferator-activated receptor-α (PPARα) activity was examined in cultured primary hepatocytes from livers wild-type L-FABP+/+ and gene ablated L-FABP−/− mice. Cultured primary hepatocytes from livers of L-FABP−/− mice exhibited: (i) reduced oxidation of palmitic acid, a common dietary long chain fatty acid (LCFA); (ii) reduced expression of fatty acid oxidative enzymes–proteins transcriptionally regulated by PPARα; (iii) reduced palmitic acid-induced PPARα co-immunoprecipitation with coactivator SRC-1 concomitant with increased PPARα co-immunoprecipitation with coinhibitor N-CoR; (iv) reduced palmitic acid-induced PPARα. Diminished PPARα activation in L-FABP null hepatocytes was associated with lower uptake of common dietary LCFA (palmitic acid as well as its fluorescent derivative BODIPY FL C
16), reduced level of total unesterified LCFA, and real-time redistribution of BODIPY FL C
16 from the central nucleoplasm to the nuclear envelope. Taken together, these studies support the hypothesis that L-FABP may facilitate ligand (LCFA)-activated PPARα transcriptional activity at least in part by increasing total LCFA ligand available to PPARα for inducing PPARα-mediated transcription of proteins involved in LCFA metabolism. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2009.03.004 |