Driving force and mechanism for spontaneous metal whisker formation

The room temperature spontaneous growth of low melting point metal whiskers, such as Sn, poses a serious reliability problem in the semiconducting industry; a problem that has become acute with the introduction of Pb-free technology. To date, this 50+ year old problem has resisted interpretation. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2004-11, Vol.93 (20), p.206104.1-206104.4, Article 206104
Hauptverfasser: BARSOUM, M. W, HOFFMAN, E. N, DOHERTY, R. D, GUPTA, S, ZAVALIANGOS, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The room temperature spontaneous growth of low melting point metal whiskers, such as Sn, poses a serious reliability problem in the semiconducting industry; a problem that has become acute with the introduction of Pb-free technology. To date, this 50+ year old problem has resisted interpretation. Herein we show that the driving force is essentially a reaction between oxygen and the sprouting metal. The resulting volume expansion creates a compressive stress that pushes the whiskers up. The model proposed explains our observations on In and Sn whiskers and many past observations. The solution is in principle simple: diffusion of oxygen into the metal must be prevented or slowed down. This was demonstrated by coating the active surfaces with a polymer coating.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.93.206104