Stacks in canonical RNA pseudoknot structures
In this paper we study the distribution of stacks/loops in k-non-crossing, τ -canonical RNA pseudoknot structures ( 〈 k , τ 〉 -structures). Here, an RNA structure is called k-non-crossing if it has no more than k - 1 mutually crossing arcs and τ -canonical if each arc is contained in a stack of leng...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2009-05, Vol.219 (1), p.7-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the distribution of stacks/loops in
k-non-crossing,
τ
-canonical RNA pseudoknot structures (
〈
k
,
τ
〉
-structures). Here, an RNA structure is called
k-non-crossing if it has no more than
k
-
1
mutually crossing arcs and
τ
-canonical if each arc is contained in a stack of length at least
τ
. Based on the ordinary generating function of
〈
k
,
τ
〉
-structures [G. Ma, C.M. Reidys, Canonical RNA pseudoknot structures, J. Comput. Biol. 15 (10) (2008) 1257] we derive the bivariate generating function
T
k
,
τ
(
x
,
u
)
=
∑
n
⩾
0
∑
0
⩽
t
⩽
n
2
T
k
,
τ
(
n
,
t
)
u
t
x
n
, where
T
k
,
τ
(
n
,
t
)
is the number of
〈
k
,
τ
〉
-structures having exactly
t stacks and study its singularities. We show that for a specific parametrization of the variable
u,
T
k
,
τ
(
x
,
u
)
exhibits a unique, dominant singularity. The particular shift of this singularity parametrized by
u implies a central limit theorem for the distribution of stack-numbers. Our results are of importance for understanding the ‘language’ of minimum-free energy RNA pseudoknot structures, generated by computer folding algorithms. |
---|---|
ISSN: | 0025-5564 1879-3134 |
DOI: | 10.1016/j.mbs.2008.12.011 |