Identification of a Cluster of Genes that Directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145

Desferrioxamines are a structurally related family of tris-hydroxamate siderophores that form strong hexadentate complexes with ferric iron. Desferrioxamine B has been used clinically for the treatment of iron overload in man. We have unambiguously identified desferrioxamine E as the major desferrio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-12, Vol.126 (50), p.16282-16283
Hauptverfasser: BARONA-GóMEZ, Francisco, WONG, Ursula, GIANNAKOPULOS, Anastassios E., DERRICK, Peter J., CHALLIS, Gregory L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Desferrioxamines are a structurally related family of tris-hydroxamate siderophores that form strong hexadentate complexes with ferric iron. Desferrioxamine B has been used clinically for the treatment of iron overload in man. We have unambiguously identified desferrioxamine E as the major desferrioxamine siderophore produced by Streptomyces coelicolor M145 and have identified a cluster of four genes (desA-D) that directs desferrioxamine biosynthesis in this model actinomycete. On the basis of comparative sequence analysis of the proteins encoded by these genes, we propose a plausible pathway for desferrioxamine biosynthesis. The desferrioxamine biosynthetic pathway belongs to a new and rapidly emerging family of pathways for siderophore biosynthesis, widely distributed across diverse species of bacteria, which is biochemically distinct from the better known nonribosomal peptide synthetase (NRPS) pathway used in many organisms for siderophore biosynthesis.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja045774k