Many-body theory of chemotactic cell-cell interactions
We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields. This model is formulated using Langevin dynamics, which allows an analytic study using methods from statistical and many-body physics. In particular we construct a diagrammatic framework within w...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-11, Vol.70 (5 Pt 1), p.051916-051916, Article 051916 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields. This model is formulated using Langevin dynamics, which allows an analytic study using methods from statistical and many-body physics. In particular we construct a diagrammatic framework within which to study cell-cell interactions. In the mean-field limit, where statistical correlations between cells are neglected, we recover the deterministic Keller-Segel equations. Within exact perturbation theory in the chemotactic coupling epsilon , statistical correlations are non-negligible at large times and lead to a renormalization of the cell diffusion coefficient D(R)--an effect that is absent at mean-field level. An alternative closure scheme, based on the necklace approximation, probes the strong coupling behavior of the system and predicts that D(R) is renormalized to zero at a critical value of epsilon, indicating self-localization of the cell. Stochastic simulations of the model give very satisfactory agreement with the perturbative result. At higher values of the coupling simulations indicate that D(R) approximately epsilon(-2) , a result at odds with the necklace approximation. We briefly discuss an extension of our model, which incorporates the effects of short-range interactions such as cell-cell adhesion. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.70.051916 |