Many-body theory of chemotactic cell-cell interactions

We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields. This model is formulated using Langevin dynamics, which allows an analytic study using methods from statistical and many-body physics. In particular we construct a diagrammatic framework within w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-11, Vol.70 (5 Pt 1), p.051916-051916, Article 051916
Hauptverfasser: Newman, T J, Grima, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields. This model is formulated using Langevin dynamics, which allows an analytic study using methods from statistical and many-body physics. In particular we construct a diagrammatic framework within which to study cell-cell interactions. In the mean-field limit, where statistical correlations between cells are neglected, we recover the deterministic Keller-Segel equations. Within exact perturbation theory in the chemotactic coupling epsilon , statistical correlations are non-negligible at large times and lead to a renormalization of the cell diffusion coefficient D(R)--an effect that is absent at mean-field level. An alternative closure scheme, based on the necklace approximation, probes the strong coupling behavior of the system and predicts that D(R) is renormalized to zero at a critical value of epsilon, indicating self-localization of the cell. Stochastic simulations of the model give very satisfactory agreement with the perturbative result. At higher values of the coupling simulations indicate that D(R) approximately epsilon(-2) , a result at odds with the necklace approximation. We briefly discuss an extension of our model, which incorporates the effects of short-range interactions such as cell-cell adhesion.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.70.051916