Peptidyl-Glycine α-Amidating Monooxygenase Targeting and Shaping of Atrial Secretory Vesicles: Inhibition by Mutated N-Terminal ProANP and PBA

ANP (atrial natriuretic peptide) is widely recognized as an important vasorelaxant, diuretic, and cardioprotective hormone. Little is known, however, about how ANP-secretory vesicles form within the atrial myocytes. Secretory vesicles were visualized by fluorescence microscope imaging in live rat at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2004-12, Vol.95 (12), p.e98-e109
Hauptverfasser: Labrador, Vénus, Brun, Cécile, König, Stéphane, Roatti, Angela, Baertschi, Alex J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ANP (atrial natriuretic peptide) is widely recognized as an important vasorelaxant, diuretic, and cardioprotective hormone. Little is known, however, about how ANP-secretory vesicles form within the atrial myocytes. Secretory vesicles were visualized by fluorescence microscope imaging in live rat atrial myocytes expressing proANP–enhanced green fluorescent protein (EGFP), or N-terminal–mutated fusion proteins thought to suppress the calcium-dependent aggregation of proANP. Results showed the following(1) aggregates of proANP and coexpressed proANP-EGFP recruited peptidylglycine α-amidating monooxygenase (PAM)-1, an abundant atrial integral vesicle membrane protein; (2) coexpressed N-terminal–mutated (Glu23,24→Gln23,24) and N-terminal–deleted proANP-EGFP inhibited recruitment of PAM-1 by up to 60%; (3) 4-phenyl-3-butenoic acid (PBA) (10 μmol/L), a pharmacological inhibitor of the lumenal peptidylglycine α-hydroxylating monooxygenase domain of PAM proteins, inhibited recruitment of endogenous PAM-1 and of coexpressed pro-EGFP–PAM-1; (4) PBA had no effect on exocytosis of the potassium inward rectifier KIR2.1; (5) PBA induced a deformation of the secretory vesicles but did not inhibit docking. These findings suggest that recruitment of PAM-1 to secretory vesicles depends on intact N-terminal proANP and on the lumenal domain of PAM-1. Conversely, PAM-1 participates in shaping the proANP-secretory vesicles. The full text of this article is available online at http://circres.ahajournals.org.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.RES.0000150592.88464.ad