A Mechanical Plant Defense Defines the Opening of a Phenological Window for Gall Induction by Asphondylia aucubae (Cecidomyiidae: Diptera)

Many insect herbivores can only use hosts during a specific phenological stage, i.e., a phenological window. Previous studies have primarily examined the effects of these windows on insect herbivores, but relatively little is known about the mechanisms controlling the phenological windows. In most g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental entomology 2009-04, Vol.38 (2), p.404-410
Hauptverfasser: Imai, Kensuke, Ohsaki, Naota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many insect herbivores can only use hosts during a specific phenological stage, i.e., a phenological window. Previous studies have primarily examined the effects of these windows on insect herbivores, but relatively little is known about the mechanisms controlling the phenological windows. In most gall insect systems, phenological windows have been attributed to the short duration of physiologically active plant tissues that induce gall formation (reactive plant tissue). In the fruit gall midge, Asphondylia aucubae Yukawa and Ohsaki, and the host plant (i.e., Aucuba japonica) system, the disappearance of reactive plant tissue closes the phenological window, but its presence does not define the opening of the window. The hard endocarp of the fruit covers most potential oviposition sites just before the midge emergence season, but decreases in proportional cover during the emergence season. We experimentally manipulated the timing of oviposition relative to fruit development. Midges that emerged earliest and attacked fruits during their earliest developmental stages were unable to oviposit because of intact, hard endocarps, whereas their counterparts that emerged later could oviposit more readily through cracks in the endocarp. We noted possible oviposition avoidance behavior and the necessity of more frequent (repeated) ovipositor insertions to intensively stimulate the decreased reactive tissues during the latter half of the emergence season. Overall, our results indicated that the fragmentation of the defensive, hard endocarp of the host plant defines the opening of the phenological window in this plant-herbivore system.
ISSN:0046-225X
1938-2936
DOI:10.1603/022.038.0213