Pre- and postsynaptic GABA receptors at reciprocal dendrodendritic synapses in the olfactory bulb
Presynaptic ionotropic receptors are important regulators of synaptic function; however, little is known about their organization in the presynaptic membrane. We show here a different spatial organization of presynaptic and postsynaptic GABA(A) receptors at reciprocal dendrodendritic synapses betwee...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2004-12, Vol.20 (11), p.2945-2952 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Presynaptic ionotropic receptors are important regulators of synaptic function; however, little is known about their organization in the presynaptic membrane. We show here a different spatial organization of presynaptic and postsynaptic GABA(A) receptors at reciprocal dendrodendritic synapses between mitral and granule cells in the rat olfactory bulb. Using postembedding electron microscopy, we have found that mitral cell dendrites express GABA(A) receptors at postsynaptic specializations of symmetric (GABAergic) synapses, as well as at presynaptic sites of asymmetric (glutamatergic) synapses. Analysis of the subsynaptic distribution of gold particles revealed that in symmetric synapses GABA(A) receptors are distributed along the entire postsynaptic membrane, whereas in asymmetric synapses they are concentrated at the edge of the presynaptic specialization. To assess the specificity of immunogold labelling, we analysed the olfactory bulbs of mutant mice lacking the alpha1 subunit of GABA(A) receptors. We found that in wild-type mice alpha1 subunit immunoreactivity was similar to that observed in rats, whereas in knockout mice the immunolabelling was abolished. These results indicate that in mitral cell dendrites GABA(A) receptors are distributed in a perisynaptic domain that surrounds the presynaptic specialization. Such presynaptic receptors may be activated by spillover of GABA from adjacent inhibitory synapses and modulate glutamate release, thereby providing a novel mechanism regulating dendrodendritic inhibition in the olfactory bulb. |
---|---|
ISSN: | 0953-816X 1460-9568 |
DOI: | 10.1111/j.1460-9568.2004.03776.x |