The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region
We have structurally characterized the c-ring from the thermoalkaliphilic Bacillus sp. strain TA2.A1 F(1)F(o)-ATP synthase. Atomic force microscopy imaging and cryo-electron microscopy analyses confirm previous mass spectrometric data indicating that this c-ring contains 13 c-subunits. The cryo-elec...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2009-05, Vol.388 (3), p.611-618 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have structurally characterized the c-ring from the thermoalkaliphilic Bacillus sp. strain TA2.A1 F(1)F(o)-ATP synthase. Atomic force microscopy imaging and cryo-electron microscopy analyses confirm previous mass spectrometric data indicating that this c-ring contains 13 c-subunits. The cryo-electron microscopy map obtained from two-dimensional crystals shows less closely packed helices in the inner ring compared to those of Na(+)-binding c(11) rings. The inner ring of alpha-helices in c(11) rings harbors a conserved GxGxGxGxG motif, with glycines located at the interface between c-subunits, which is responsible for the close packing of these helices. This glycine motif is altered in the c(13) ring of Bacillus sp. strain TA2.A1 to AxGxSxGxS, leading to a change in c-c subunit contacts and thereby enlarging the c-ring diameter to host a greater number of c-subunits. An altered glycine motif is a typical feature of c-subunit sequences in alkaliphilic Bacillus species. We propose that enlarged c-rings in proton-dependent F-ATP synthases may represent an adaptation to facilitate ATP synthesis at low overall proton-motive force, as occurs in bacteria that grow at alkaline pH. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2009.03.052 |