Early Growth Response Gene-2, a Zinc-Finger Transcription Factor, Is Required for Full Induction of Clonal Anergy in CD4+ T Cells

Ag-specific immune tolerance results from the induction of cellular mechanisms that limit T cell responses to selective Ags. One of these mechanisms is characterized by attenuated proliferation and decreased IL-2 production in fully stimulated CD4(+) Th cells and is denoted T cell anergy. We report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-12, Vol.173 (12), p.7331-7338
Hauptverfasser: Harris, John E, Bishop, Kenneth D, Phillips, Nancy E, Mordes, John P, Greiner, Dale L, Rossini, Aldo A, Czech, Michael P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ag-specific immune tolerance results from the induction of cellular mechanisms that limit T cell responses to selective Ags. One of these mechanisms is characterized by attenuated proliferation and decreased IL-2 production in fully stimulated CD4(+) Th cells and is denoted T cell anergy. We report the identification of the early growth response gene (Egr-2; Krox-20), a zinc-finger transcription factor, as a key protein required for induction of anergy in cultured T cells. Gene array screening revealed high Egr-2 expression distinctly persists in anergized but not proliferating murine A.E7 T cells. In contrast, Egr-1, a related family member induced upon costimulation, displays little or no expression in the anergic state. IL-2-mediated abrogation of anergy causes rapid depletion of Egr-2 protein. Full stimulation of anergic A.E7 T cells fails to enhance IL-2 and Egr-1 expression, whereas Egr-2 expression is greatly increased. Silencing Egr-2 gene expression by small interfering RNA treatment of cultured A.E7 T cells before incubation with anti-CD3 alone prevents full induction of anergy. However, small interfering RNA-mediated depletion of Egr-2 5 days after anergy induction does not appear to abrogate hyporesponsiveness to stimulation. These data indicate that sustained Egr-2 expression is necessary to induce a full anergic state through the actions of genes regulated by this transcription factor.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.173.12.7331