The N-terminus of a novel isoform of human iASPP is required for its cytoplasmic localization

ASPP1 and ASPP2 are both proteins that interact with p53 and enhance its ability to induce apoptosis by selectively elevating the expression of proapoptotic p53-responsive genes. iASPP(RAI) is a third member of the family that is the most conserved inhibitor of p53-mediated apoptosis. Here, we have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2004-12, Vol.23 (56), p.9007-9016
Hauptverfasser: Slee, Elizabeth A, Gillotin, Sébastien, Bergamaschi, Daniele, Royer, Christophe, Llanos, Susana, Ali, Safia, Jin, Boquan, Trigiante, Giuseppe, Lu, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ASPP1 and ASPP2 are both proteins that interact with p53 and enhance its ability to induce apoptosis by selectively elevating the expression of proapoptotic p53-responsive genes. iASPP(RAI) is a third member of the family that is the most conserved inhibitor of p53-mediated apoptosis. Here, we have described iASPP, a longer form of iASPP(RAI), which at 828 amino acids is more than twice the size of iASPP(RAI). Using two antibodies that recognize both iASPP and iASPP(RAI), we report that this longer form of iASPP is the predominant form of the molecule expressed in cells. Like iASPP(RAI), iASPP also binds to p53 and inhibits apoptosis induced by p53 overexpression. However, whereas iASPP(RAI) is predominantly nuclear, the N-terminus of iASPP is entirely cytoplasmic, and the longer iASPP is located in both the cytoplasm and the nucleus. The effect upon subcellular localization of the longer N-terminus of iASPP means that this new, longer form of the molecule may be subject to greater regulation and provides another layer in the control of p53-induced apoptosis.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1208088