Photoinduced Unfolding of β-Lactoglobulin Mediated by a Water-Soluble Porphyrin
We investigated the effects that the irradiation of a tetra-anionic porphyrin (mesotetrakis(sulfonatophenyl)porphyrin) noncovalently bound to β-lactoglobulin (BLG) produces on the conformation of the protein. Although BLG is not a potential target for the biomedical applications of porphyrins, it is...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2009-04, Vol.113 (17), p.6020-6030 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the effects that the irradiation of a tetra-anionic porphyrin (mesotetrakis(sulfonatophenyl)porphyrin) noncovalently bound to β-lactoglobulin (BLG) produces on the conformation of the protein. Although BLG is not a potential target for the biomedical applications of porphyrins, it is a useful model for investigating the effects of photoactive ligands on small globular proteins. We show in this paper that irradiation causes a large unfolding of the protein and that the conformational change is not mediated by the formation of reactive oxygen species. Instead, our data are consistent with an electron-transfer mechanism that is capable of triggering structural changes in the protein and causes the Trp19 residue to undergo chemical modifications to form a derivative of kynurenine. This demonstrates that protein unfolding is prompted by a type-III photosensitizing mechanisms. Type-III mechanisms have been suggested previously, but they have been largely neglected as useful mediators of biomolecular damage. Our study demonstrates that porphyrins can be used as mediators of localized protein conformational changes and that the biomedical applications as well as the mechanistic details of electron transfer between exogenous ligands and proteins merit further investigation. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp900957d |