A model for altered neural network dynamics related to prehension movements in Parkinson disease

In this paper, we present a neural network model of the interactions between cortex and the basal ganglia during prehensile movements. Computational neuroscience methods are used to explore the hypothesis that the altered kinematic patterns observed in Parkinson’s disease patients performing prehens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2009-04, Vol.100 (4), p.271-287
Hauptverfasser: Molina-Vilaplana, J., Contreras-Vidal, J. L., Herrero-Ezquerro, M. T., Lopez-Coronado, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a neural network model of the interactions between cortex and the basal ganglia during prehensile movements. Computational neuroscience methods are used to explore the hypothesis that the altered kinematic patterns observed in Parkinson’s disease patients performing prehensile movements is mainly due to an altered neuronal activity located in the networks of cholinergic (ACh) interneurons of the striatum. These striatal cells, under a strong influence of the dopaminergic system, significantly contribute to the neural processing within the striatum and in the cortico-basal ganglia loops. In order to test this hypothesis, a large-scale model of neural interactions in the basal ganglia has been integrated with previous models accounting for the cortical organization of goal directed reaching and grasping movements in normal and perturbed conditions. We carry out a discussion of the model hypothesis validation by providing a control engineering analysis and by comparing results of real experiments with our simulation results in conditions resembling these original experiments.
ISSN:0340-1200
1432-0770
DOI:10.1007/s00422-009-0296-7