Structure and function of benzoylurea-derived alpha-helix mimetics targeting the Bcl-x(L)/Bak binding interface
The Bcl-x(L)/Bak protein-protein interaction has emerged as an important target for cancer therapy due to its role in apoptosis. Inhibition of this interaction by small-molecule antagonists induces apoptosis in unhealthy cells. Bak, a pro-apoptotic Bcl-2 protein, projects four hydrophobic side chain...
Gespeichert in:
Veröffentlicht in: | ChemMedChem 2009-04, Vol.4 (4), p.649-656 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Bcl-x(L)/Bak protein-protein interaction has emerged as an important target for cancer therapy due to its role in apoptosis. Inhibition of this interaction by small-molecule antagonists induces apoptosis in unhealthy cells. Bak, a pro-apoptotic Bcl-2 protein, projects four hydrophobic side chains (V74, L78, I81, and I85), corresponding to the i, i+4, i+7, and i+11 positions of an alpha-helix, into a hydrophobic cleft on Bcl-x(L). Herein, we present a novel family of rationally designed alpha-helix mimetics with improved solubility and synthetic feasibility based on a benzoylurea scaffold. These benzoylurea derivatives favor a linear conformation stabilized by an intramolecular hydrogen bond, and are able to mimic the spatial projection of the i, i+4, and i+7 residues of an alpha-helix. The binding of the benzoylurea derivatives to Bcl-x(L) was assessed using fluorescence polarization competition assays, isothermal titration calorimetry, and (15)N-HSQC experiments. These experiments showed that these agents bind to and disrupt Bcl-x(L) with low micromolar inhibition and dissociation constants, with (15)N-HSQC experiments confirming binding to the hydrophobic pocket of Bcl-x(L) normally occupied by the Bak helix. |
---|---|
ISSN: | 1860-7187 |
DOI: | 10.1002/cmdc.200800387 |