The diagonal band of Broca is involved in the pressor pathway activated by noradrenaline microinjected into the periaqueductal gray area of rats

The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2009-03, Vol.84 (13), p.444-450
Hauptverfasser: Pelosi, Gislaine Garcia, Tavares, Rodrigo Fiacadori, Corrêa, Fernando Morgan Aguiar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. The pharmacologically reversible ablation of the dbB with local microinjection of CoCl 2 significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the dPAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2009.01.011