Implantation mechanisms: insights from the sheep

Implantation in all mammals involves shedding of the zona pellucida, followed by orientation, apposition, attachment and adhesion of the blastocyst to the endometrium. Endometrial invasion does not occur in domestic ruminants; thus, definitive implantation is achieved by adhesion of the mononuclear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproduction (Cambridge, England) England), 2004-12, Vol.128 (6), p.657-668
Hauptverfasser: Spencer, Thomas E, Johnson, Greg A, Bazer, Fuller W, Burghardt, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Implantation in all mammals involves shedding of the zona pellucida, followed by orientation, apposition, attachment and adhesion of the blastocyst to the endometrium. Endometrial invasion does not occur in domestic ruminants; thus, definitive implantation is achieved by adhesion of the mononuclear trophoblast cells to the endometrial lumenal epithelium (LE) and formation of syncytia by the fusion of trophoblast binucleate cells with the LE. This review highlights new information on mechanisms regulating the implantation cascade in sheep. The embryo enters the uterus on day 4 at the morula stage of development and then develops into a blastocyst by day 6. The blastocyst sheds the zona pellucida (day 8), elongates to a filamentous form (days 11–16), and adheres to the endometrial LE (day 16). Between days 14 and 16, the binucleate cells begin to differentiate in the trophoblast and subsequently migrate and fuse with the endometrial LE to form syncytia. Continuous exposure of the endometrium to progesterone in early pregnancy downregulates the progesterone receptors in the epithelia, a process which is associated with loss of the cell-surface mucin MUC1 and induction of several secreted adhesion proteins. Recurrent early pregnancy loss in the uterine gland knockout ewe model indicates that secretions of the endometrial epithelia have a physiologic role in blastocyst elongation and implantation. A number of endometrial proteins have been identified as potential regulators of blastocyst development and implantation in sheep, including glycosylated cell adhesion molecule 1 (GlyCAM-1), galectin-15, integrins and osteopontin. The epithelial derived secreted adhesion proteins (GlyCAM-1, galectin-15 and osteopontin) are expressed in a dynamic temporal and spatial manner and regulated by progesterone and/or interferon tau, which is the pregnancy recognition signal produced by the trophoblast during blastocyst elongation. The noninvasive and protracted nature of implantation in domestic animals provides valuable opportunities to investigate fundamental processes of implantation that are shared among all mammals. Understanding of the cellular and molecular signals that regulate uterine receptivity and implantation can be used to diagnose and identify causes of recurrent pregnancy loss and to improve pregnancy outcome in domestic animals and humans.
ISSN:1470-1626
1741-7899
DOI:10.1530/rep.1.00398