Genotypic variation and identification of QTLs for agronomic traits, using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.)

A population of 77 recombinant inbred lines (RILs) were developed through single-seed descent from a cross between 'PAC-2' and 'RHA-266'. Seeds of the above-mentioned RILs and their parents were planted in the field in a randomised complete block design with two replications. Gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2004-11, Vol.109 (7), p.1353-1360
Hauptverfasser: RACHID, G, AL-CHAARANI, GENTZBITTEL, L, HUANG, X. Q, SARRAFI, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A population of 77 recombinant inbred lines (RILs) were developed through single-seed descent from a cross between 'PAC-2' and 'RHA-266'. Seeds of the above-mentioned RILs and their parents were planted in the field in a randomised complete block design with two replications. Genetic control for some agronomical traits-sowing-to-flowering date, plant height, stem diameter (SD), head diameter (HD), grain weight per plant, 1,000-grain weight (TGW) and the percentage of oil in grains-were measured for RILs and their parents. Genetic variability was observed among 77 RILs for all traits studied. Transgressive segregation occurred for some traits, and the comparison between 10% of selected RILs with the best parent showed significant difference for SD and HD as well as for TGW. A set of 123 RILs from the same cross, including the 77 above-mentioned RILs and their two parents, were screened with 409 AFLP and SSR markers, and a linkage map was constructed based on 367 markers. Several QTLs associated with the studied traits were identified. The effects of each QTL are moderate, ranging from 7% to 37%, but a high percentage of phenotypic variance is explained when considering all the covariants (TR2 mean around 80% in each trait). Although the detected regions need to be more precisely mapped, the information obtained should help in marker-assisted selection.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-004-1770-1