Interfacially formed organized planar inorganic, polymeric and composite nanostructures

This paper discusses synthetic strategies for fabrication of new organized planar inorganic, polymeric, composite and bio-inorganic nanostructures by methods based on chemical reactions and physical interactions at the gas–liquid interface, Langmuir monolayer technique, interfacial ligand exchange a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in colloid and interface science 2004-11, Vol.111 (1), p.79-116
1. Verfasser: Khomutov, Gennady B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses synthetic strategies for fabrication of new organized planar inorganic, polymeric, composite and bio-inorganic nanostructures by methods based on chemical reactions and physical interactions at the gas–liquid interface, Langmuir monolayer technique, interfacial ligand exchange and substitution reactions, self-assembling and self-organization processes, DNA templating and scaffolding. Stable reproducible planar assemblies of ligand-stabilized molecular nanoclusters containing definite number of atoms have been formed on solid substrate surfaces via preparation and deposition of mixed Langmuir monolayers composed by nanocluster and surfactant molecules. A novel approach to synthesis of inorganic nanoparticles and to formation of self-organized planar inorganic nanostructures has been introduced. In that approach, nanoparticles and nanostructures are fabricated via decomposition of insoluble metal-organic precursor compounds in a layer at the gas–liquid interface. The ultimately thin and anisotropic dynamic monomolecular reaction system was realized in that approach with quasi-two-dimensional growth and organization of nanoparticles and nanostructures in the plain of Langmuir monolayer. Photochemical and redox reactions were used to initiate processes of interfacial nucleation and growth of inorganic phase. It has been demonstrated that morphology of resulting inorganic nanostructures can be controlled efficiently by variations of growth conditions via changes in state and composition of interfacial planar reaction media, and by variations of composition of adjacent bulk phases. Planar arrays and chains of iron oxide and ultrasmall noble metal (Au and Pd) nanoparticles, nanowires and new organized planar disk, ring, net-like, labyrinth and very high-surface area nanostructures were obtained by methods based on that approach. Highly organized monomolecular polymeric films on solid substrates were obtained via deposition of Langmuir monolayer formed by water-insoluble amphiphilic polycation molecules. Corresponding nanoscale-ordered planar polymeric nanocomposite films with incorporated ligand-stabilized molecular metallic nanoclusters and interfacially grown nanoparticles were fabricated successfully. Novel planar DNA complexes with amphiphilic polycation monolayer were formed at the gas–aqueous phase interface and then deposited on solid substrates. Toroidal and new net-like conformations were discovered in those complexes. Nanoscale supr
ISSN:0001-8686
1873-3727
DOI:10.1016/j.cis.2004.07.005