Inactivation of the Fto gene protects from obesity

Several independent, genome-wide association studies have identified a strong correlation between body mass index and polymorphisms in the human FTO gene. Common variants in the first intron define a risk allele predisposing to obesity, with homozygotes for the risk allele weighing approximately 3 k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2009-04, Vol.458 (7240), p.894-898
Hauptverfasser: Fischer, Julia, Koch, Linda, Emmerling, Christian, Vierkotten, Jeanette, Peters, Thomas, Brüning, Jens C, Rüther, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several independent, genome-wide association studies have identified a strong correlation between body mass index and polymorphisms in the human FTO gene. Common variants in the first intron define a risk allele predisposing to obesity, with homozygotes for the risk allele weighing approximately 3 kilograms more than homozygotes for the low risk allele. Nevertheless, the functional role of FTO in energy homeostasis remains elusive. Here we show that the loss of Fto in mice leads to postnatal growth retardation and a significant reduction in adipose tissue and lean body mass. The leanness of Fto-deficient mice develops as a consequence of increased energy expenditure and systemic sympathetic activation, despite decreased spontaneous locomotor activity and relative hyperphagia. Taken together, these experiments provide, to our knowledge, the first direct demonstration that Fto is functionally involved in energy homeostasis by the control of energy expenditure.
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature07848