DANCE/fibulin-5 promotes elastic fiber formation in a tropoelastin isoform-dependent manner
To investigate a function of fibulin-5 in the elastic fiber formation, we studied the molecular interactions among elastin, fibrillin-1, and fibulin-5 in the extracellular space and the maturation of tropoelastin using retinal pigment epithelial cells (ARPE-19). Bacterial recombinant tropoelastin (r...
Gespeichert in:
Veröffentlicht in: | Clinical biochemistry 2009-05, Vol.42 (7), p.713-721 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate a function of fibulin-5 in the elastic fiber formation, we studied the molecular interactions among elastin, fibrillin-1, and fibulin-5 in the extracellular space and the maturation of tropoelastin using retinal pigment epithelial cells (ARPE-19).
Bacterial recombinant tropoelastin (rTE) was added to ARPE-19 cells overexpressing V5-tagged fibulin-5 (ARPE-Fibulin-5). These elastic fibers were evaluated by immunofluorescence staining, the quantitative analysis of cross-linked amino acids, and semi-quantitative analysis of matrix-associated tropoelastin.
Immunoprecipitation assays revealed that fibulin-5 is able to separately interact with tropoelastin or fibrillin-1 in the culture medium. Moreover, immunofluorescent staining showed that elastin, fibrillin-1, and fibulin-5 co-localize in the extracellular matrix. Desmosine levels were significantly increased in ARPE-Fibulin-5 relative to untransfected cells in spite of equal deposition of tropoelastin by enzyme-linked immunosorbent assay. The addition of a tropoelastin isoform, which lacked the peptide encoded by exon 26A (Δ26A) and could bind to fibulin-5 strongly, led to a larger increase in cross-linking amino acids compared to tropoelastin containing the exon 26A peptide sequence.
These data provide new insights into the initial steps of elastic fiber assembly and identify fibulin-5 and tropoelastin isoforms as potential targets for the regeneration of elastic fibers in vivo. |
---|---|
ISSN: | 0009-9120 1873-2933 |
DOI: | 10.1016/j.clinbiochem.2008.12.020 |