Changes in plasma and tissue amino acid levels in an animal model of complex fatigue

Abstract Objective Fatigue can be classified as physical or mental, depending on its cause. In physical fatigue, changes in the plasma levels of some amino acids have been reported. However, complex fatigue, which is experienced in daily life, is a combination of physical and mental fatigue. We aime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2009-05, Vol.25 (5), p.597-607
Hauptverfasser: Jin, Guanghua, Kataoka, Yosky, M.D., Ph.D, Tanaka, Masaaki, M.D., Ph.D, Mizuma, Hiroshi, Ph.D, Nozaki, Satoshi, Ph.D, Tahara, Tsuyoshi, Ph.D, Mizuno, Kei, Ph.D, Yamato, Masanori, Watanabe, Yasuyoshi, M.D., Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Objective Fatigue can be classified as physical or mental, depending on its cause. In physical fatigue, changes in the plasma levels of some amino acids have been reported. However, complex fatigue, which is experienced in daily life, is a combination of physical and mental fatigue. We aimed to identify changes in amino acid levels in the plasma, skeletal muscle, liver, and brain in an animal model of complex fatigue. Methods Rats were kept in a cage filled with water to a height of 2.2 cm for 5 d. Because rats showed a reduction of body weight when the model was developed, we also included a food-restricted group showing a similar profile in weight reduction as the water-immersed rats. A non-treated control group was also included. Results Results indicated that levels of branched-chain amino acids (valine, leucine, and isoleucine) were increased in plasma (valine, leucine, and isoleucine; P < 0.01), skeletal muscle (valine, leucine, and isoleucine; P < 0.01), the liver (valine; P < 0.05), and brain (isoleucine; P < 0.05), whereas a reduction in other amino acid levels (total amino acids and glutamine in the plasma, skeletal muscle, and liver; and phenylalanine, tyrosine, arginine, and threonine in the brain; P < 0.01) was seen in animals with complex fatigue. Conclusion Complex fatigue may bring about systemic changes in amino acid metabolism in multiple organs.
ISSN:0899-9007
1873-1244
DOI:10.1016/j.nut.2008.11.021