Thyroid Transcription Factor-1 Inhibits Transforming Growth Factor-β-Mediated Epithelial-to-Mesenchymal Transition in Lung Adenocarcinoma Cells
Thyroid transcription factor-1 (TTF-1) is expressed in lung cancer, but its functional roles remain unexplored. TTF-1 gene amplification has been discovered in a part of lung adenocarcinomas, and its action as a lineage-specific oncogene is highlighted. Epithelial-to-mesenchymal transition (EMT) is...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2009-04, Vol.69 (7), p.2783-2791 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thyroid transcription factor-1 (TTF-1) is expressed in lung cancer, but its functional roles remain unexplored. TTF-1 gene amplification has been discovered in a part of lung adenocarcinomas, and its action as a lineage-specific oncogene is highlighted. Epithelial-to-mesenchymal transition (EMT) is a crucial event for cancer cells to acquire invasive and metastatic phenotypes and can be elicited by transforming growth factor-beta (TGF-beta). Mesenchymal-to-epithelial transition (MET) is the inverse process of EMT; however, signals that induce MET are largely unknown. Here, we report a novel functional aspect of TTF-1 that inhibits TGF-beta-mediated EMT and restores epithelial phenotype in lung adenocarcinoma cells. This effect was accompanied by down-regulation of TGF-beta target genes, including presumed regulators of EMT, such as Snail and Slug. Moreover, silencing of TTF-1 enhanced TGF-beta-mediated EMT. Thus, TTF-1 can exert a tumor-suppressive effect with abrogation of cellular response to TGF-beta and attenuated invasive capacity. We further revealed that TTF-1 down-regulates TGF-beta2 production in A549 cells and that TGF-beta conversely decreases endogenous TTF-1 expression, suggesting that enhancement of autocrine TGF-beta signaling accelerates the decrease of TTF-1 expression and vice versa. These findings delineate potential links between TTF-1 and TGF-beta signaling in lung cancer progression through regulation of EMT and MET and suggest that modulation of TTF-1 expression can be a novel therapeutic strategy for treatment of lung adenocarcinoma. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-08-3490 |