Structure-Based Discovery of a Novel Angiotensin-Converting Enzyme 2 Inhibitor

Angiotensin-converting enzyme 2 (ACE2) is considered an important therapeutic target for controlling cardiovascular diseases and severe acute respiratory syndrome (SARS) outbreaks. Recently solved high-resolution crystal structures of the apo-bound and inhibitor-bound forms of ACE2 have provided the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2004-12, Vol.44 (6), p.903-906
Hauptverfasser: Huentelman, Matthew J, Zubcevic, Jasenka, Prada, Jose A. Hernández, Xiao, Xiaodong, Dimitrov, Dimiter S, Raizada, Mohan K, Ostrov, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiotensin-converting enzyme 2 (ACE2) is considered an important therapeutic target for controlling cardiovascular diseases and severe acute respiratory syndrome (SARS) outbreaks. Recently solved high-resolution crystal structures of the apo-bound and inhibitor-bound forms of ACE2 have provided the basis for a novel molecular docking approach in an attempt to identify ACE2 inhibitors and compounds that block SARS coronavirus spike protein-mediated cell fusion. In this study, ≈140 000 small molecules were screened by in silico molecular docking. In this structure–activity relation study, the molecules with the highest predicted binding scores were identified and assayed for ACE2 enzymatic inhibitory activity and for their ability to inhibit SARS coronavirus spike protein-mediated cell fusion. This approach identified N-(2-aminoethyl)-1 aziridine-ethanamine as a novel ACE2 inhibitor that also is effective in blocking the SARS coronavirus spike protein-mediated cell fusion. Thus, the molecular docking approach resulting in the inhibitory capacity of N-(2-aminoethyl)-1 aziridine-ethanamine provides an attractive small molecule lead compound on which the development of more effective therapeutic agents could be developed to modulate hypertension and for controlling SARS infections.
ISSN:0194-911X
1524-4563
1524-4563
DOI:10.1161/01.HYP.0000146120.29648.36