Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration
Analysis of in vitro cell motility is a useful tool for assessing cellular response to a range of factors. However, the majority of cell-tracking systems available are designed primarily for use with fluorescently labelled images. In this paper, five commonly used tracking systems are examined for t...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2009-04, Vol.234 (1), p.62-79 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analysis of in vitro cell motility is a useful tool for assessing cellular response to a range of factors. However, the majority of cell-tracking systems available are designed primarily for use with fluorescently labelled images. In this paper, five commonly used tracking systems are examined for their performance compared with the use of a novel in-house cell-tracking system based on the principles of image registration and optical flow. Image registration is a tool commonly used in medical imaging to correct for the effects of patient motion during imaging procedures and works well on low-contrast images, such as those found in bright-field and phase-contrast microscopy. The five cell-tracking systems examined were Retrac, a manual tracking system used as the gold standard; CellTrack, a recently released freely downloadable software system that uses a combination of tracking methods; ImageJ, which is a freely available piece of software with a plug-in for automated tracking (MTrack2) and Imaris and Volocity, both commercially available automated tracking systems. All systems were used to track migration of human epithelial cells over ten frames of a phase-contrast time-lapse microscopy sequence. This showed that the in-house image-registration system was the most effective of those tested when tracking non-dividing epithelial cells in low-contrast images, with a successful tracking rate of 95%. The performance of the tracking systems was also evaluated by tracking fluorescently labelled epithelial cells imaged with both phase-contrast and confocal microscopy techniques. The results showed that using fluorescence microscopy instead of phase contrast does improve the tracking efficiency for each of the tested systems. For the in-house software, this improvement was relatively small ( |
---|---|
ISSN: | 0022-2720 1365-2818 |
DOI: | 10.1111/j.1365-2818.2009.03144.x |