Stabilization and mobility of the head and trunk in vervet monkeys (Cercopithecus aethiops) during treadmill walks and gallops

The brain requires internal or external reference frames to determine body orientation in space. These frames may change, however, to meet changing conditions. During quadrupedal overground locomotion by monkeys, the head rotates on a stabilized trunk during walking, but the trunk rotates on a stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2004-12, Vol.207 (Pt 25), p.4427-4438
1. Verfasser: Dunbar, Donald C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The brain requires internal or external reference frames to determine body orientation in space. These frames may change, however, to meet changing conditions. During quadrupedal overground locomotion by monkeys, the head rotates on a stabilized trunk during walking, but the trunk rotates on a stabilized head during galloping. Do the same movement patterns occur during in-place locomotion? Head and trunk pitch rotations were measured, and yaw and roll rotations estimated from cine films of three adult vervet monkeys (Cercopithecus aethiops L. 1758) walking and galloping quadrupedally on a treadmill. Head and trunk rotational patterns during treadmill walks were comparable to the patterns found during overground walks. The rotational velocities of these segments during both treadmill walks and gallops were also comparable to the velocities found during natural locomotion. By contrast, whereas head and trunk rotational patterns during treadmill gallops did occur that were comparable to the patterns practiced during overground gallops, a significantly different pattern involving large and simultaneous head and trunk rotations was more commonly observed. Simultaneous head and trunk rotations may be possible during treadmill gallops because the fixed visual surround is providing an adequate spatial reference frame. Alternatively, or in addition to this visual information, a re-weighting in other sensory modalities may be occurring. Specifically, the vestibular inputs used during overground locomotion to reference gravity or a gravity-derived vector may become less important than proprioceptive inputs that are using the treadmill belt surface as a reference. Regardless, the spatial reference frame being used, blinks that occur at specific times during the largest head yaw rotations may be necessary to avoid the initiation of unwanted and potentially destabilizing lateral sway brought on by sudden increases in optic flow velocity.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.01282